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Abstract—Free convection in a porous shallow cavity with differentially heated end walls has been studied.

The governing differential equations are analytically solved by applying the method of asymptotic expan-

sions. The results show that the constant-property solution (Boussinesq approximation) deviates approxi-

mately 3% from the variable-property solution, if the properties in the Boussinesq solution are taken as
the arithmetic mean between the hot and cold end wall temperature.

1. INTRODUCTION

IN ANALYTIC studies on free convection problems the
fluid properties are usually treated as constants except
the density in the buoyancy term of the equation of
motion. This assumption, which is generally referred
to as the Boussinesq approximation, is reasonable if
the appearing temperature and pressure gradients are
not too large.

In opposition to forced convection problems, the
density has to be considered as temperature dependent
in free convection problems, because temperature and
density gradients, respectively, are the generator of
the motion. For that reason it could be generally
expected that the variable properties have a bigger
effect on free than on forced convection.

A systematic study on the effect of variable prop-
erties on free and forced convection boundary layer
problems was carried out by Herwig [1]. Merker and
Mey [2] solved the governing equation for free con-
vection in a shallow cavity with variable properties
using the method of matched asymptotic expansions.
Blythe and Simpkins [3] theoretically studied the free
convection in a porous layer with a temperature-
dependent viscosity. In the present study, free con-
vection in a porous shallow cavity with differentially
heated end walls is considered. This very simple
geometry has already been examined in the studies
carried out by Walker and Homsy [4] as well as by
Bejan and Tien [S]. The governing equations are
solved by applying the method of asymptotic expan-
sions, as was already done in Part 1 of this paper for
a Newtonian fluid.

2. MATHEMATICAL FORMULATION

Figure 1 shows a schematic sketch of the shallow
cavity. The temperature and velocity field in the core

tThe asterisk refers to physical quantities.

region are also sketched in this figure. The end walls
are kept at constant but different temperatures 7, and
Ty, respectively. The cavity is filled with a porous
medium.

The governing equations for this free convection
problem are the equation of continuity
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and the equation of thermal energy

a0 00 d 1, 06
2y —|=A42= -_—
Gr Pr pc, I:A Uz + Av By:| A 7% {i ax}

) 00
+5;{1@}' @
These equations have to be solved subject to the
boundary conditions

x=0: u=0, 0=0,

x=1: u=0, 6=8,
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Equations (1)-(4) have already been made dimen-
sionless by using the quantitiest given in Table 1. As
dimensionless groups appear the Grashof number,
Gr = pgrugh/ng, the Prandtl number, Pr = vg/ay and
the cavity aspect ratio 4 = A/l.

The variable properties are developed in a Taylor
series as was done elsewhere [1, 2]. One obtains finally,
for example, for the density
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thermal diffusivity [m?*s™']
heat capacity [Jkg~'K™]
acceleration of gravity [ms=?]
height of cavity [m]

length of cavity [m]

pressure [N m~?]

temperature [K]

velocity components [ms™']
Cartesian coordinates [m].
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Greek symbols

NOMENCLATURE

v kinematic viscosity [m*s~']
p  density [kgm™?]
Y stream function [—].

Dimensionless groups
A cavity aspect ratio
Gr  Grashof number
dimensionless property of the second kind
Nusselt number
Pr  Prandtl number.

B coefficient of thermal expansion [K ']
€ perturbation parameter [—] Subscripts
n dynamic viscosity {Pas] B Boussinesq approximation
0 dimensionless temperature [—] c cold
x  permeability [m?] h  hot
A thermal conductivity [Wm~'K '] R reference state.
core | end For the reference temperature we choose the arith-
xxx!o(xxx xxxxxé o~y ><><><><>|<><>/> metic mean between the end wall temperatures,
i / Tr = (T.+ T,)/2, as well as the cold end temperature,
f ?f / E | Tr = T.. The reference velocity uy is determined by
Te I é @ h /U | Th considering the buoyancy term in equation (3). Sub-
y i |f ! stituting the Taylor series (5) for the properties in
x*xx% /xxxx x.xxx_?‘xxx;fxx equations (1)~(4) and demanding that all terms in
x_ ¢ = const adiabatic equation (3) are of O (1) for small ¢, one obtains
| prgrek,
Ug = — ————. ®
FiG. 1. Schematic sketch of the porous shallow cavity. =
Considering the identity
g? eK, = —Pr(Tw—T. 10
p=1+:K,0+-K,0° () o= ~h@h =T (10)
as well as the expression for the kinematic viscosity
with Vr = g/ Pr, One finds for the reference velocity
K, = <;:ﬁ ©) p = = an
T? 9%p* and, finally, for the Grashof number
K, =\—~5777 o
2 p* oT
gkh
Gr=—Br(Th—T0) (12)
and YR
LT, ®) an expression, frequently used in porous media prob-
S T lems.

Table 1. Dimensionless quantities
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3. SOLUTION TECHNIQUE

The governing equations (1)-(4) are solved by using
the method of asymptotic expansions which is
explained in detail elsewhere and will not be repeated
again here. We speak of linear theory if terms to
O(¢"), and of quadratic theory if terms to O(g?) are
considered. Finally, one ends up at O (e with the
following set of equations:

Oug vy
ox | dy 0 (13)
0
U = —Gr% (14)
op
Avy = —Gra—yo +8, (15)
00 20 0*0, 0%0
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These equations have already been deduced by
Walker and Homsy as well as by Bejan and Tien by
applying the Boussinesq approximation to the govern-
ing equations.

After some manipulations one ends for the O (¢')
the equation of continuity
ou, 0v, a0,
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the Darcy equations
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and the equation of thermal energy
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The set of equations (13)—(16) has already been
solved by Bejan and Tien as well as by Walker and

1 One should remember that the properties 4, p, and ¢, are
dimensionless quantities, see Table 1.
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Homsy using the method of asymptotic expansions
with the cavity aspect ratio 4 as the expansion par-
ameter. In the remainder it is shown how the resulting
equations at O(g') and O(g?) are solved using this
method.
It is appropriate to introduce the stream function
pu=%, pv:—A%ﬁ 2n
which identically fulfils the equation of continuity. In
addition, the pressure is eliminated in the usual way
by applying the curl operation to the equations of
motion. For further details see refs. [2, 4, 5].

4. SOLUTIONS

For the case Ty = (T,+ T.)/2 one obtains for the
core velocity component
-K,, K41>

1 /%,
1y K,
+62 x_i K3121+K‘-|K'11_K K'h
£
Kﬂz X
Kpl )+ z(x ])( Kj_l K,th_l)
1

The heat transport in the core region is due to
diffusion and convection. Furthermore, as the lower
and upper walls of the cavity are adiabatic, the heat
flux in each cross-section of the cavity must remain
the same. Hence, the Nusselt number can be cal-
culated from

(22a)
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With Ty = (T.+T,)/2 one obtains for the Nusselt

number
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In the case of Ty = T, one obtains for the core
velocity component
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and for the Nusselt number
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The mathematical form of the solution is very simi-
lar to that for the Newtonian fluid case, see Merker
and Mey [2]. This is not surprising as the solutions
for the porous cavity at O(e% (see Blythe and
Simpkins [3], and Bejan and Tien [S] was already
very similar to that for a Newtonian fluid deduced by
Cormack et al. [6].

In the solution given above the terms at O(z') and
O(&?) are corrections to the basic solution at O(e°)
which has been obtained by applying the Boussinesq
approximation.

5. DISCUSSION

Figure 2 shows the relative deviation between the
Nusselt number for variable properties and that for
constant properties vs the expansion parameter ¢ for
A =0.02 and the case Ty = (T, +T,)/2. It is inter-
esting to note that the constant-property solution
(Boussinesq approximation) becomes identical with
the variable-property solution of the linear theory if
the arithmetic mean between the cold and hot end
wall temperature is used as the reference state. The
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Fi16G. 2. Relative deviation between the variable-property and

the constant-property solution vs the expansion parameter

for 4 =0.02 and in the case Ty = (T.+T)/2: @, linear
theory; @, quadratic theory.

Gr
0 300 600
0.6 I
A =002
TR = Tc
Water
03— : —
2
Nu-Nug
NUB
4] o
Air
1
2
-03 |
0 005 01
[

F1G. 3. Relative deviation between the variable-property and

the constant-property solution vs the expansion parameter

for A = 0.02 and in the case Ty = T,: @, linear theory; @,
quadratic theory.

Nusselt number is somewhat increased if the quadratic
terms are added, that is approximately 2.5% for
¢ =0.10, i.e. Gr = 600.

Figure 3 shows the results for the case Ty = T,. The
graphs marked @ indicate the results of the linear
theory and those marked @ those of the quadratic
theory. The graphs show that the effect of the variable
properties on the Nusselt number is contrary for air
and water. Considering the results of the linear theory
for ¢ = 0.1, the Nusselt number for water is 42%
larger and the Nusselt number for air is 24% lower
than that obtained for constant properties. Adding
the quadratic terms, the deviation for water becomes
larger and that for air smaller. This rather strange
behaviour shows clearly that in cavity flow problems
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CONVECTION NATURELLE DANS UNE CAVITE PEU PROFONDE
AVEC PROPRIETES VARIABLES—2. MILIEUX POREUX

Résumé—On étudie la convection naturelle dans une cavité poreuse peu profonde, avec des extrémités

chauffées différemment. Les équations différentielles sont résolues analytiquement en appliquant la méthode

des développements asymptotiques. Les résultats montrent que la solution pour propriétés constantes

(approximation de Boussinesq) s’écarte approximativement de 3% de la solution & propriétés variables si

les propriétés dans la solution de Boussinesq sont prises a la température moyenne entre celles des parois
chaude et froide.

FREIE KONVEKTION IN EINEM FLACHEN BEHALTER MIT VARIABLEN
STOFFWERTEN—2. POROSE MEDIEN

Zusammenfassung—Die freie Konvektion in einem pordsen und flachen Behélter, dessen Stirnflichen

unterschiedlich beheizt sind, wird theoretisch untersucht. Die das Problem beschreibenden Differ-

entialgleichungen werden mit der Methode der angepaBten asymptotischen Entwicklung analytisch gelost.

Die Ergebnisse zeigen, daB die Losung fiir konstante Stoffwerte (Boussinesq-Néherung) um maximal 3%

von der fiir verdnderliche Stoffwerte abweicht, wenn die Stoffwerte in die Boussinesq-Losung bei der
arithmetischen Mitteltemperatur eingesetzt werden.

ECTECTBEHHASI KOHBEKLIMS B MEJIKOI MOJIOCTA C YYETOM NEPEMEHHOCTH
CBOVICTB--2. IOPUCTAS CPEJA

Amnotama—JIpoBeieHO MCClIENOBAHHE CTECTBEHHOH KOHBEKLIHH B MOPHCTON MEJKOM MOJIOCTH, TOpue-

BbI€ CTEHKH KOTOPO# NOANEPKUBAIOTCA NPH Pa3Hoit Temneparype. C NOMOILBIO METOAA ACHMITOTHYEC-

KHX Ppa3J/IOXEHHI pelleHne OJ11 3aBHCAIIMX OT TeMIepaTyphl cBoMcTB (npubmmxenne Bycchuecka)

OTJNIMMAETCS, NPUMEPHO, HA 3% OT pelleHus Ul CIy4as NEPEeMEHHbIX CBOMCTB, €CNIM 3TH CBOWCTBA B

pewennn Byccunecka GepyTes npu cpeqHe-apapMETHYECKOM 3HAUCHHH TEMAEPATYPbl MEXy ropsyei u
XOJIOMHON TOPUEBbLIMH CTEHKAMH.,
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