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Abstract-Free convection in a porous shallow cavity with differentially heated end walls has been studied. 
The governing differential equations are analytically solved by applying the method of asymptotic expan- 
sions. The results show that the constant-property solution (Boussinesq approximation) deviates approxi- 
mately 3% from the variable-property solution, if the properties in the Boussinesq solution are taken as 

the arithmetic mean between the hot and cold end wall temperature. 

1. INTRODUCTION 

IN ANALYTIC studies on free convection problems the 
fluid properties are usually treated as constants except 
the density in the buoyancy term of the equation of 
motion. This assumption, which is generally referred 
to as the Boussinesq approximation, is reasonable if 
the appearing temperature and pressure gradients are 
not too large. 

In opposition to forced convection problems, the 
density has to be considered as temperature dependent 
in free convection problems, because temperature and 
density gradients, respectively, are the generator of 
the motion. For that reason it could be generally 
expected that the variable properties have a bigger 
effect on free than on forced convection. 

A systematic study on the effect of variable prop- 
erties on free and forced convection boundary layer 
problems was carried out by Herwig [l]. Merker and 
Mey [2] solved the governing equation for free con- 
vection in a shallow cavity with variable properties 
using the method of matched asymptotic expansions. 
Blythe and Simpkins [3] theoretically studied the free 
convection in a porous layer with a temperature- 
dependent viscosity. In the present study, free con- 
vection in a porous shallow cavity with differentially 
heated end walls is considered. This very simple 
geometry has already been examined in the studies 
carried out by Walker and Homsy [4] as well as by 
Bejan and Tien [5]. The governing equations are 
solved by applying the method of asymptotic expan- 
sions, as was already done in Part 1 of this paper for 
a Newtonian fluid. 

2. MATHEMATICAL FORMULATION 

Fig&e 1 shows a schematic sketch of the shallow 
cavity. The temperature and velocity field in the core 

tThe asterisk refers to physical quantities. 

region are also sketched in this figure. The end walls 
are kept at constant but different temperatures T, and 
T,,, respectively. The cavity is filled with a porous 
medium. 

The governing equations for this free convection 
problem are the equation of continuity 
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the equation of motion 

(1) 

ap 
r,w = -Grz 

Aqu= -Gr$+(l-p)E 

(2) 

(3) 

and the equation of thermal energy 

GrPr pc,[A’ug + A$] = A2& {I:} 

+a A!!!! 
ay i 1 ay . (4) 

These equations have to be solved subject to the 
boundary conditions 

x=0: u=o, e=e, 

x= 1: u=o, 0= eh 

y = 0,l: 
ae 

u = 0, - = 0. 
ay 

Equations (l)-(4) have already been made dimen- 
sionless by using the quantities? given in Table 1. As 

dimensionless groups appear the Grashof number, 
Gr = pRuRh/qR, the Prandtl number, Pr = oRlaIR and 
the cavity aspect ratio A = h/l. 

The variable properties are developed in a Taylor 
series as was done elsewhere [ 1,2]. One obtains finally, 
for example, for the density 
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a thermal diffusivity [m’s_‘] 

CP 
heat capacity [J kg-’ K-‘1 

h” 

acceleration of gravity [m s-‘1 
height of cavity [m] 

1 length of cavity [m] 

P pressure [N m-‘1 
T temperature [K] 
U, v velocity components [m s-‘1 

x, y Cartesian coordinates [ml. 

NOMENCLATURE 

V kinematic viscosity [m” s- ‘1 

P density [kgm-‘1 

4Q stream function [-_I. 

Dimensionless groups 
A cavity aspect ratio 
Gr Grashof number 

Km/ dimensionless property of the second kind 
Nu Nusselt number 
Pr Prandtl number. 

Subscripts 
B Boussinesq approximation 
C cold 
h hot 
R reference state. 

Greek symbols 

B coefficient of thermal expansion [K-l] 
E perturbation parameter [-_I 

B 
dynamic viscosity [Pas] 
dimensionless temperature [-_I 

; 
permeability [m’] 
thermal conductivity [W m-’ K-l] 

core end 

&--- I _______I 

FIG. 1. Schematic sketch of the porous shallow cavity. 

with 

and 

For the reference temperature we choose the arith- 
metic mean between the end wall temperatures, 
T, = (T, + T,)/2, as well as the cold end temperature, 
TR = T,. The reference velocity ua is determined by 
considering the buoyancy term in equation (3). Sub- 
stituting the Taylor series (5) for the properties in 
equations (l)-(4) and demanding that all terms in 
equation (3) are of 0 (1) for small E, one obtains 

Considering the identity 

(5) 
&Kp, = -BR(TcTJ (10) 

as well as the expression for the kinematic viscosity 
vR = qR/pR, one finds for the reference velocity 

(11) 

(7) 
and, finally, for the Grashof number 

Gr=g$/IR(T,,-Tc) (12) 

T, - Tc 
&=-ET. (8) 

an expression, frequently used in porous media prob- 
lems. 

Table 1. Dimensionless quantities 

x* y* u* u* KP* T- TR P* ‘7: /I* cp’ 
T h AUR AUR z TH-TR PR VR AR %+ 
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3. SOLUTION TECHNIQUE 

The governing equations (l)-(4) are solved by using 
the method of asymptotic expansions which is 

explained in detail elsewhere and will not be repeated 
again here. We speak of linear theory if terms to 
O(E ‘), and of quadratic theory if terms to 0 (s2) are 
considered. Finally, one ends up at 0(&O) with the 
following set of equations : 

($J+av,=() 
aY 

(13) 

u _&aPo 0- ax (14) 

Au0 = -Grdp, +Bo ay (15) 

GrPr A’u,,~+u,,~ 
( ) 

=Az$!&$?. (16) 

These equations have already been deduced by 
Walker and Homsy as well as by Bejan and Tien by 
applying the Boussinesq approximation to the govern- 
ing equations. 

After some manipulations one ends for the O(E’) 
the equation of continuity 

the Darcy equations 

K,,u,~,+u, = -Grf$ (18) 

1 KP2 
~(K,,,u~~~+u,) = -Gr* + 8, + ZFe; 

aY 
(19) 

PI 

and the equation of thermal energy 

GrPr A’u,$ +A2u, 2 +A2Kp,~,u,~ 

+AKp,Ho~O~+AK 
ay 

0 u 3 CPl O 0 ay 1 
= A’$ +A2&, +A’K&$ 

(20) 

The set of equations (13t(16) has already been 
solved by Bejan and Tien as well as by Walker and 

t One should remember that the properties 1, p, and cp are 
dimensionless quantities, see Table 1. 

Homsy using the method of asymptotic expansions 
with the cavity aspect ratio A as the expansion par- 

ameter. In the remainder it is shown how the resulting 
equations at O(E’) and O(E’) are solved using this 
method. 

It is appropriate to introduce the stream function 

a* a* 
PU=~, pv= -Aax (21) 

which identically fulfils the equation of continuity. In 

addition, the pressure is eliminated in the usual way 
by applying the curl operation to the equations of 
motion. For further details see refs. [2; 4, 51. 

4. SOLUTIONS 

For the case T, = (Th+ TJ2 one obtains for the 

core velocity component 

(224 

The heat transport in the core region is due to 
diffusion and convection. Furthermore, as the lower 
and upper walls of the cavity are adiabatic, the heat 

flux in each cross-section of the cavity must remain 
the same. Hence, the Nusselt number can be cal- 
culated from 

Nu = 1 g - Gr Pr puc,O 
> 

dy. cwt 

With T, = (T,+ T,,)/2 one obtains for the Nusselt 
number 

KG 
Nu= 1+&2=+ 

A 2 Gr2 Pr2 

120 

(244 
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In the case of T, = T, one obtains for the core 
velocity component 

and for the Nusselt number 

k, &, A2Gr2Pr2 
Nu= ~+E~+E=~+ 

120 

(22b) 

(24b) 

The mathematical form of the solution is very simi- 
lar to that for the Newtonian fluid case, see Merker 
and Mey [2]. This is not surprising as the solutions 
for the porous cavity at O(E’) (see Blythe and 
Simpkins [3], and Bejan and Tien [5] was already 
very similar to that for a Newtonian fluid deduced by 

Cormack et al. [6]. 
In the solution given above the terms at O(E’) and 

O(E*) are corrections to the basic solution at 0(&O) 
which has been obtained by applying the Boussinesq 
approximation. 

5. DISCUSSION 

Figure 2 shows the relative deviation between the 
Nusselt number for variable properties and that for 
constant properties vs the expansion parameter E for 
A = 0.02 and the case TR = (T,,+T,)/2. It is inter- 
esting to note that the constant-property solution 
(Boussinesq approximation) becomes identical with 
the variable-property solution of the linear theory if 
the arithmetic mean between the cold and hot end 
wall temperature is used as the reference state. The 

Gr 
300 

I 
600 

FIG. 2. Relative deviation between the variable-property and 
the constant-property solution vs the expansion parameter 
for A = 0.02 and in the case TR = (T,+ T,,)/2: 0, linear 

theory ; 0, quadratic theory. 
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FIG. 3. Relative deviation between the variable-property and 
the constant-property solution vs the expansion parameter 
for A = 0.02 and in the case Ta = T, : 0, linear theory ; 0, 

quadratic theory. 

Nusselt number is somewhat increased if the quadratic 
terms are added, that is approximately 2.5% for 
E = 0.10, i.e. Gr = 600. 

Figure 3 shows the results for the case TR = T,. The 
graphs marked 0 indicate the results of the linear 
theory and those marked @ those of the quadratic 
theory. The graphs show that the effect of the variable 
properties on the Nusselt number is contrary for air 
and water. Considering the results of the linear theory 
for E = 0.1, the Nusselt number for water is 42% 
larger and the Nusselt number for air is 24% lower 
than that obtained for constant properties. Adding 
the quadratic terms, the deviation for water becomes 
larger and that for air smaller. This rather strange 
behaviour shows clearly that in cavity flow problems 
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the end wall temperature is not appropriate as a ref- 
erence temperature. 

Summing up, the results presented show that the 2. 
arithmetic mean between the end wall temperature is 
a reasonable value as a reference temperature in cavity 3. 
flow problems. The Nusselt numbers obtained from 
the constant-property solution (Boussinesq approxi- 
mation) are sufficiently accurate if the variable prop- 

4, 

erties are taken at this reference temperature. 5. 
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CONVECTION NATURELLE DANS UNE CAVITE PEU PROFONDE 
AVEC PROPRIETES VARIABLES-2. MILIEUX POREUX 

R&urn-n Btudie la convection naturelle dans une cavite poreuse peu profonde, avec des extr&mit&s 
chauffkes diffkremment. Les bquations diffkrentielles sont r&olues analytiquement en appliquant la methode 
des d&veloppements asymptotiques. Les r&ultats montrent que la solution pour propriit&s constantes 
(approximation de Boussinesq) s’bcarte approximativement de 3% de la solution $ prop&&s variables si 
les proprittks dans la solution de Boussinesq sont prises $ la tempirature moyenne entre celles des parois 

chaude et froide. 

FREIE KONVEKTION IN EINEM FLACHEN BEHiiLTER MIT VARIABLEN 
STOFFWERTEN-2. POROSE MEDIEN 

Zusammenfassung-Die freie Konvektion in einem poriisen und flachen Behllter, dessen Stimfllchen 
unterschiedlich beheizt sind, wird theoretisch untersucht. Die das Problem beschreibenden Differ- 
entialgleichungen werden mit der Methode der angepal3ten asymptotischen Entwicklung analytisch gelast. 
Die Ergebnisse zeigen, da0 die Liisung fiir konstante Stoffwerte (Boussinesq-Nlherung) urn maximal 3% 
von der fiir verlnderliche Stoffwerte abweicht, wenn die Stoffwerte in die Boussinesq-Liisung bei der 

arithmetischen Mitteltemperatur eingesetzt werden. 

ECTECTBEHHAB KOHBEKqkiR B MEJIKOR I-IOJIOCTH C YgETOM IIEPEMEHHOCTkI 
CBOtiCTB-2. I-IOPMCTAII CPEAA 

h”OTW,W--npOB’C,WHO HCCneJ&OBaHHe eC7eCTBeHHOii KOHBe~UWl B lTO,XlCTOfi MenKOfi L'IOnOCWTOpUe- 

Bble creHKsi xo~opofi noanepmklsaloTcn npA pasaoii TehmepaType. C nohtombm MeTona acuMnToTnSec- 
XHx pa3nomeHG pemeHHe ana 3aancamBx o-r Tebmeparypbr CB~F~CTB (npu6numemie Bycc5inecxa) 
OTJmiaeTCa, npahlepao, Ha 3% OT pemeHHr Qnr cnyqar nepeMeHHbrX CBO~~B, ecm 3TH ceoiicTea B 
pemeHHH 6yCCHHWKa 6epyTCSl IIpH C~L,He-apH~Mt?WK5CKOM 3HaWHUW TeMnepaTypbl MEKAy rOpRWii U 

XOJIOAHOti TOpWBbIMH CTeHKilMB. 


